So-net無料ブログ作成

No.197 - 囲碁とAI:趙治勲 名誉名人の意見 [技術]

2016年3月、韓国のイ・セドル九段とディープマインド社の「アルファ碁」の5番勝負がソウル市内で行われ、アルファ碁の4勝1敗となりました。イ・セドル九段は世界のトップクラスの棋士です。コンピュータはその棋士に "勝った" ことになります。この5番勝負とアルファ碁については次の三つの記事に書きました。

No.174 ディープマインド
No.180 アルファ碁の着手決定ロジック(1)
No.181 アルファ碁の着手決定ロジック(2)

その8ヶ月後の2016年11月に、今度は日本最強の囲碁プログラム、DeepZenGoと趙治勲ちょうちくん名誉名人の3番勝負(第2回 囲碁電王戦)が開催され、趙名誉名人の2勝1敗となりました(11/19, 11/20, 11/23の3戦)。"人間側" の勝利に終わったわけですが、日本の囲碁プログラムが互先たがいせんでプロ棋士に勝ったのは初めてです。第1回 囲碁電王戦(2014)ではプロ2人とアマ名人相手に1勝もできなかったことを考えると、格段の進歩だと言えます。

以上の、アルファ碁 対 イ・セドル九段、DeepZenGo 対 趙名誉名人の棋戦を、趙名誉名人本人が振り返ったコラム記事が新聞に掲載されました。実際に囲碁プログラムと互先で戦ったトップ棋士の意見として貴重なものです。また大変に興味深い内容だったので、以下にそれを紹介したいと思います。

なお、DeepZenGo の前身は日本の有名な囲碁プログラム、"Zen" です(市販されている)。それに深層学習を取り入れた強化版が DeepZenGo です。以下、Zen と DeepZenGo を区別せずに "Zen" と書きます。趙名誉名人の記事もそうなっています。Zen の開発者は尾島陽児氏と加藤英樹氏(開発チーム代表)で、強化版の開発にあたっては深層学習の権威である松尾豊・東大准教授の研究室が協力しました。


イ・セドル九段 対 アルファ碁


まず趙さんはアルファ碁とイ・セドル九段の対局にふれ、その数ヶ月前に欧州チャンピオンに勝ったときと比べて、アルファ碁が急速に強くなったことを説明します。


欧州王者を下した時のアルファ碁を見るかぎり、アルファ碁は弱かった。勝負もどっこいどっこいで、どちらが勝つこともありえた。

欧州王者はセドルには到底及ばない。周囲にはセドルが100%間違いなく勝つと断言していた。ただ、欧州王者からセドルとの対局までの2ヶ月間で、ものすごく強くなっていた。人間だと200年か2000年かかる成長だ。天才でも最低20年はかかる。

趙治勲名誉名人「囲碁とAI」
(日刊工業新聞 2016.12.15, 16, 20, 21)

ここで趙さんが強調しているのは「アルファ碁は短期間で急激に強くなった」ということです。20年・200年・2000年という数字が出てきますが、これは趙さん独特の表現でしょう。なおアルファ碁と欧州王者との対戦は2015年10月、イ・セドル九段との対戦は2016年3月なので、その間は4~5ヶ月あります。趙さんが「2ヶ月間で」と書いているのは勘違いだと思います。

そのイ・セドル九段とアルファ碁の対局(5回戦)ですが、第1局、第2局と、イ・セドル九段はアルファ碁に連敗を喫してしまいます。この戦いを趙さんは次のように解説しています。


1局目は途中までセドルが勝っていた。アルファ碁の手は完璧ではなかった。ただ一発、いい手が入りセドルの動揺を誘った。正しく対応すれば大丈夫だったはずが、逆転されそのまま負けてしまった。相手が人間なら逆転したことで、自身も浮足立つ。ただAIは動揺せず押し切られた形だ

この負けがセドルをおかしくした。2局目はアルファ碁が良い碁を打った。人間なら疲れを持ち越してしまうがAIに疲労はない。セドルが完敗した。

(同上、以下同じ)

第1局と第2局の敗戦をふまえ、イ・セドル九段は第3局で対局の方針を変えたと趙さんは言います。


セドルはアルファ碁のとの対局で先に2敗し、後がなくなって仲間と人工知能(AI)を分析したそうだ。序盤に優勢に持ち込む必要があると結論が出て、戦略を持って3局目に臨んだ。

ただ、普段のセドルは相手の弱点を突く碁は打たない。自身の強さに絶対の自信を持っていて、ただ最善手を打って勝ってきた。セドルが相手の弱点を探すこと自体、動揺の表れだろう。3局目に敗れて負け越しが決まった。


3連敗したあとの第4局で、イ・セドル九段は妙手を放って勝ちます。


そこで最善を尽くす本来の姿に戻った。4局目も苦しい碁だったが、セドルは妙手を打った。これでコンピュータが狂い、素人同然のめちゃくちゃな手を打ち出した。


続く第5局はアルファ碁の勝ちに終わり、結局4勝1敗でアルファ碁が勝利しました。この棋戦全体を、趙さんは次のように振り返っています。


結果、4勝1敗でアルファ碁が勝ったが、1局目も2、3局目も弱点はたくさんあった。

セドルはアルファ碁を甘く見ていたため、動揺して弱点が見えなくなってしまったのだろう。驚き、AIの強い部分だけを見ると弱い部分が見えなくなってしまう。

セドルが平常心で打てば力量はアルファ碁に勝っていた。AIは完璧ではないし、最後の詰めが甘い。私も勝つ自信がある。ただ3ヶ月で欠点を克服したと聞く。どこまで強くなっているのか試したい



イ・セドル九段の敗戦の理由


趙治勲名誉名人といえば、歴代最多のタイトル獲得(74回)を誇り、第25世本因坊でもあるトップ棋士です。その趙さんが考えるイ・セドル九段の敗戦の理由は、

  アルファ碁を甘く見ていために、動揺し、平常心を失った

という極めて人間的なものです。「セドルが平常心で打てば、力量はアルファ碁に勝っていた」と趙さんが書いているのは(対戦当時のアルファ碁では)その通りなのでしょう。

逆にアルファ碁は、平常心というか、"心" はないので常に "平常" だったと言うべきです。趙さんも書いているように、人間なら「逆転して有利になった」と思った瞬間、浮き足立って逆に悪い手を打ってしまうことがあるのですが、そういうこともない。動揺、焦り、浮き足立つ、疲れ、うっかり、 ・・・・・・ そういうものに一切関係がありません。

アルファ碁を甘くみていたとの趙さんの見解ですが、しかしこれはやむをえないとも言えます。「欧州王者を下した時のアルファ碁を見るかぎり、アルファ碁は弱かった(趙さん)」のだから・・・・・・。No.181「アルファ碁の着手決定ロジック(2)」に書いたように、アルファ碁を開発したディープマインド社が英雑誌「Nature」に投稿した論文によると、欧州王者を下した時のアルファ碁の棋力はプロ五段相当です。イ・セドル九段に比べると断然弱い。従って趙さん自身も「周囲にはセドルが100%間違いなく勝つと断言していた」わけです。イ・セドル九段も、またイ・セドル九段の周囲も、おそらくそう思っていたでしょう。

しかしアルファ碁は急速に強くなった。その詳細は明らかではありませんが、自己対戦を繰り返して強化学習をさらにやったのかも知れないし、ハードウェアを増強してより深く読めるようになったのかも知れない。そのどうであれ、ここでわかることは「急速に強くなることがある。それがAI」ということです。人間の天才が20年かかる進歩(趙さんの表現)を数ヶ月で成し遂げることもあり得る。

趙さんによるとアルファ碁には弱点もあって、それは「最後の詰めが甘い」ことです。趙さんは「イ・セドル九段と対戦した時のアルファ碁には勝つ自信がある、その後に欠点を克服したと聞くが、どこまで強くなっているのか試したい」と書いています。



「どこまで強くなっているのか試したい」とあるように、趙さんはアルファ碁と対戦してみたいと公言していました。その対局は実現していませんが、日本製の囲碁AI、Zen との対戦が実現する運びになりました。


趙治勲名誉名人 対 Zen


イ・セドル九段とアルファ碁との対戦の8ヶ月後の2016年11月、日本最強の囲碁プログラム Zen と趙さんの対局が実現することになりました。冒頭に書いたように、深層学習で強化した Zen(正式名:DeepZenGo)です。なお、以下の引用の 《第1局》 《第2局》 《第3局》 は記事に付け加えたものです。

電王戦3局.jpg
電王戦第3局(2016.11.23)の趙治勲名誉名人(右)と開発チームの加藤英樹代表
(site: newswitch.jp)

日本製の囲碁AI「Zen」は以前から実力を知っていた。6ヶ月前に3子を置いて棋士に勝ったが、3子は片手片足で相撲をとるようなもの。勝負ではなくレッスンだ。その碁を解説したが負ける気はしなかった(引用注:Zen が小林光一名誉棋聖に3子を置いて4目半勝ちした碁を指す)。

《第1局》
Zenもアルファ碁同様、石の捨て方がうまい。序盤に布石のうまさが出た。布石は私より上手だろう。序盤は私が劣勢。中盤、形勢が良くなり、楽観しながら堅めに打ち、後半は良い勝負。Zen は形勢が悪くなると悪手が出る。悪手を見て勝ちを確信した。

《第2局》
反対に2局目は序盤で私がひどい手を打ってしまった。棋士としてはずかしい。

《第3局》
これで開き直り、(ゴルフの)OB覚悟で打ったら、Zen も気が緩んだのか、人間のようなミスをした。私は勝ちに行く手を選び、(Zenは:引用注)強引になってしまった。それで負けが決まった。

趙治勲名誉名人「囲碁とAI」
(日刊工業新聞 2016.12.15 - 12.21)

趙治勲名誉名人は Zen との対戦の経験をふまえて、AIの棋力について、次のように書いています。


AIの序盤の布石は素晴らしい。私は欲深い手を打って、相手をリードしようとしてしまう。AIは損得でなく、自然体だから強いのだと思う。真っ白なキャンバスに自由にデッサンしているようだ。創造性を身につけたように思える。

一方、終盤は未知数だ。まだまだ精進する必要がある。これは勉強すれば何とかなる。ただ創造性の部分は鍛えるには限度がある。最初の50手は創造の世界なのだ。AIが絵画や音楽などの芸術の分野でも活躍できるのではないかと思う。

(同上、以下同じ)


AIによって囲碁は発展する


趙治勲名誉名人はコラムのまとめとして、AIによって囲碁界は発展するだろという主旨の見解を述べています。


人工知能(AI)の台頭を恐れる考えもあるが、囲碁にとっては良いことだらけだ

トーナメントプロでは、日本でチャンピオンになっても世界にはまだ上がいる。ここにAIが入ってきただけだ。人間は世界チャンピオンになると、自分が最強だからとおごってしまう。AIは謙虚なままだ。チャンピオンは人間でもAIでもいい。棋士は、より強くなるために勉強し続ける。

レッスンプロはAIの手を借りられる。アマチュアが強くなり裾野が広がる。指導する一人ひとりに合わせた人間味のある教え方や、かゆいところに届く指導がちゃんと評価されるようになる。


このくだりで趙さんは、トーナメントプロ、レッスンプロ、アマチュアのそれぞれで、"AIの使い方" や "AIに対する向き合い方" があることを述べています。AI技術を使うと囲碁のアマチュアに対する完全個別指導がいつでも行える環境を作れる可能性があるわけです。これは囲碁人口を増やすことにつながります。

趙さんの "自信" の背景にあるのは、囲碁がとてつもなく奥深いものだという絶対の確信でしょう。この奥深さは、次のように表現されています。


碁は本当の面白さがわかるまで年月がかかる。例えばアルファ碁とイ・セドル九段の対局を理解できる人は世界に1000人もいない。私も中国や韓国のトップ棋士の対局は一度石を並べるだけではわからない。現在もトップ棋士はどんどん進化しているからだ。何度も石を並べ直して理解している。

普通の人も AI の助けを借りて強くなれば、トップの奥深さがわかり、その魅力に一生離れられなくなるだろう。それは6ヶ月前の Zen くらいだろうか。囲碁の競技人口は4000万人。10億人が打つようになればまったく新しい手も出てくる。AI も強くなり、棋士はもっと勉強して高みを目指す。



井山裕太 六冠の意見


趙治勲名誉名人に続いて、井山裕太 六冠(六冠は2017.1 現在)の意見も付け加えておきたいと思います。井山さんは囲碁プログラムと互先で戦った経験はありませんが、2017年3月に DeepZenGo と戦う予定があります。また言うまでもなく現代日本の最強の棋士であり、その方が AI をどういう風に見ているかは重要でしょう。


アルファ碁の棋譜をみると、部分的なヨミでは常に正しい正解を打っている感じてもなく、まだまだ人間の方が上かと思いましたが、人間的にいう大局感というのか、部分的に最善でなくても全体では遅れていない、むしろリードしている局面が多かったように感じました。

井山裕太 六冠
朝日新聞(2017.1.3)

今の段階では、ぱっとは目がいかないけれど、打たれてみるとなるほどと感じる部分はある。AI が生み出す新たな打ち方、考え方を吸収できる。それで囲碁の可能性が広がればいいと、ポジティブに受け止めています。

AI が人間を完全に凌駕りょうがしてしまったら、今までと同じようにファンのみなさんが棋士同士の戦いを楽しんでくださるのか、気になるところです。でも自動車が出現しても、陸上競技の魅力は色あせません。人間には感情がある、疲れがある、ミスが出る。それらを含めての魅力が、人間同士の戦いにはあります

囲碁はまだわからないことだらけですが、私も徐々にではあるけれども強くなっている、進歩しているという感覚があります。強い気持ちで新たなステージに臨もうと思います。

(同上)

ちなみにこの朝日新聞の記事の中で井山 六冠は、「アルファ碁は、うわさレベルではさらに強く、とてつもないレベルに達していると聞きます」と発言しています。まさにその通りのようで、2016年末から 2017年初頭にかけて "新アルファ碁" が 囲碁対局サイトの「東洋囲碁」と「野狐のぎつね囲碁」に登場し、トッププロと対戦して60連勝しました。井山 六冠もその中の一人だとされます。

これはもちろん早碁ですが、持ち時間が十分ある碁ではどうなのでしょうか。それでも「ものすごく強いだろう」という大方の推測です。日本棋院は所属の棋士に全60局の棋譜を配布するとありました。"新アルファ碁" は日本だけでなく中国、韓国の棋士によって徹底的に研究されるでしょう。"新アルファ碁" とトッププロとの本格対局も予定されているようなので、注視したいと思います。


AIの "大局感"


これ以降は趙治勲名誉名人と井山裕太 六冠の意見についての感想です。

趙治勲名誉名人と井山裕太 六冠の意見に共通することは、二人とも AI囲碁にポジティブなことです。それは、囲碁のプロフェッショナルとして、

強い相手と対戦してみたい
囲碁の神様がいるなら、それを感じてみたい
そのことによって自らも進歩したい

という意欲・意識だと思います。では AI のどこが強いのか。二人の意見を総合してその強さを一言でいうと「大局感」だと思います。

AIの序盤の布石は素晴らしい(趙)。
Zen もアルファ碁同様、石の捨て方がうまい(趙)。
部分的に最善でなくても全体では遅れていない、むしろリードしている(井山)。

などをまとめると「大局感に優れている」ということだと思うのです。我々は普通、コンピュータの得意なところは細部の緻密な計算やヨミだと考えます。全体を見渡してマクロ的・直感的にものごとを把握するのは苦手だと考えるのが普通です。しかし囲碁の AI は逆です。全体を俯瞰する大局感の方が優れていて、細部に関しては「最後の詰めが甘い(趙)」とか「部分的には最善ではない(井山)」のです。



その理由を考えてみると、次のようだと想像できます。DeepZenGo も基本的にアルファ碁のロジックにのっとっているそうなので(日経ITpro 2016.11.09 の記事による)No.180-181「アルファ碁の着手決定ロジック」に沿って考えてみます。

アルファ碁の基本ロジックは「モンテカルロ木検索 - Monte Carlo Tree Search : MCTS」です。MCTSでは局面の勝率を判定しながら、有力な候補手を次々と木探索するのですが、局面の勝率を推定するのに使われるのが「ロールアウト(=プレイアウト)」です。ロールアウトとは、とにかく一定のロジックに従って終局までプレーしてみて勝ち負けを判定し、それを多数繰り返えし、その勝率を局面の勝率とするというものです。

No.180-181で書いたように、アルファ碁は独自の rollout policy でロールアウトをします。しかしそれだけではありません。policy networkvalue network という2つの多層ニューラルネットワーク(Deep Neural Network。DNN)をもっています。その働きは次の通りです。

policy network
囲碁のルール上許されるすべての手について、次に打つ手としての有力度合いを数値(確率分布)で示すDNN。

value network
局面の勝率を推定するDNN。膨大な局面のサンプルをもとに policy network を使ってロールアウトした事前シミュレーションに基づいて作成される。

というものです。そしてアルファ碁の勝率判定は rollout policy を使ったロールアウトによる勝率判定と、value networkによる勝率判定ををミックスして行われています。

結局のところ「アルファ碁の勝率判定はロールアウトによる」と言えるでしょう。ロールアウトは「とにかく終局まで打ってみたらどうなるか」というシミュレーションです。これを候補手(合法手)について、手の有力度合いに従って繰り返し、勝率の高い手を選ぶ。

つまり、常に白紙の状態で、終局までを見据えて(=最後までヨセて)最適な手を選んでいるのがアルファ碁です。一切の "こだわり" がない。これが「自然体」とか「真っ白なキャンバスに自由にデッサンしているよう」という趙名誉名人の感想や、「部分的に最善でなくても全体では遅れていない、むしろリードしている」という井山 六冠の発言につながり、それが大局感に優れていると見えるのだと思います。


AI は意味を説明できるか


趙名誉名人の新聞コラムの中に、AI によって囲碁の裾野が広がるという主旨の発言がありました。つまり「AI によって一人一人に合わせた教え方や、かゆいところに届く指導ができる。アマチュアが強くなり裾野が広がる」との主旨です。これは果たしてどこまで正しいのでしょうか。

もちろん、アマチュアを指導する囲碁の先生が、AI を参考にしながら指導するのは可能であり、大いに役立つと思います。しかし AI だけがアマチュアを指導する(=AI指導碁)というのは、どうなのでしょう。

"AIの先生" が打つべき候補手を数手示し、それぞれの勝率を示すのはいつでも可能です。しかし、たとえば候補手① の勝率は 60%、候補手② の勝率は 50%としたとき、①が 10%だけまさる理由を AI は説明できるのでしょうか。「②は相手の厚みに近寄り過ぎていて攻められる恐れがある、①のように控えるのが正しい」というようにです。また逆に「形勢が悪いので、思い切って相手の厚みに近寄ってでも模様を張る①が正解」という風にです。結論だけを言われても、人は納得はできないのです。

"捨て石" に関して言うと、趙名誉名人は、AI は捨て石がうまいと語っています。これは井山 六冠の「部分的に最善でなくても全体ではリードしている」という発言とも関係しているのでしょう。では、なぜその場面で石を捨てるのがいいのか、石を助けずに別の場所に打つのがより勝率をあげるのか、AI は説明できるでしょうか。「捨てたと見える石も完全に死んだわけではなく、あとあとの進行でこういう風に有効に生かせるから」というような、"捨てる理由" を説明できるかという問題です。

もちろん中には説明できるケースもあるでしょう。No.180-181「アルファ碁の着手決定ロジック」でもわかるように、シチョウに取られないようにするとか、ナカデで死なないようにするとか、ダメヅマリを回避するとか、そういった理由は説明できそうです。しかしこれらはアマチュアの囲碁初級者でも分かる理由です。かつ、局所的・部分的な打ち手に関する理由です。AI が得意なのは局所的・部分的ではなく、大局的な最善手を打つことでした(趙、井山両氏による)。その大局的な最善手について、そう打つ理由を AI は説明できるでしょうか。

このあたり、現代のAIの本質的な問題点がありそうです。「なぜだか分からないし、理由はさだかではないが、結構正しい」のが AI の出す回答だということがよくある。囲碁のプロなら AIが打つ手の意味を即座に解説できたとしても、AI 自身は分かっていない。逆に言うと、意味を無視して膨大なデータを統計的に処理するからこそ、AIの有効性や可能性があると言えるのでしょう。

もちろん囲碁に限っていうと、AI のヨミ筋はコンピュータに蓄えられているので、そのヨミ筋の解析から打ち手の理由や意味を解説できるようになるかもしれません。ただしこれは機械学習では無理でしょう。「ある局面における次の一手とその意味」を蓄積したビッグデータが存在しないからです。「ある局面と次の一手」というデータは膨大にあるけれども・・・・・・。従って人間が教え込む必要があるのですが、かなりの難作業ではないでしょうか。

アルファ碁が打った手の意味を真に解説できるのは、開発会社のディープマインド社の社員ではなく、アルファ碁の棋譜を詳しく研究したプロ棋士だと確信します。



ここで思い出すのは、前回の No.196「東ロボにみるAIの可能性と限界」で引用した、国立情報学研究所の新井教授("ロボットは東大に入れるか" プロジェクトのリーダ)の発言です。新井教授は中高生向けに講演するとき次のように話すそうです。


(AI は)数学の問題を解いても、雑談につきあってくれても、珍しい白血病を言い当てても、意味はわかっていない。逆に言えば、意味を理解しなくてもできる仕事は遠からず AI に奪われる。私は次のように講演を締めくくる。

「みなさんは、どうか『意味』を理解する人になってください。それが『ロボットは東大に入れるか』を通じてわかった、AI によって不幸にならない唯一の道だから」

新井紀子
朝日新聞デジタル
(2016.11.25)

人間は普通、暗黙であれ意識的であれ、意味・意図・理由を持って(込めて)行動します。だからこそ、良い結果の経験を蓄積したり、逆に悪い結果から反省をして進歩するわけです。無意味に(意味も分からずに)行動していたのでは進歩がありません。

囲碁とAIというテーマで見えてくるもの、それはやはり「機械学習によるAI」の驚くべき可能性と、その裏にある課題、ないしは限界だと思いました。




nice!(0)  トラックバック(0) 

nice! 0

トラックバック 0